If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a+a^2=72
We move all terms to the left:
a+a^2-(72)=0
a = 1; b = 1; c = -72;
Δ = b2-4ac
Δ = 12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*1}=\frac{-18}{2} =-9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*1}=\frac{16}{2} =8 $
| 6/4+3/4a=1/4a-2/4 | | -8/3-3/5u=-3/2 | | 15x=92-17 | | -x-14=15 | | -13g+1.9=-11.1 | | 10/x=8/7x+1 | | x=x(10-2x)(10-2x) | | 6u−u=7+18 | | 0.1x=0 | | 12=3(w+5)-6w | | 12=2(w+5)-6w | | 9(w+6)=81 | | 2(x-7)-10=12-4× | | -2-x=-2-4x | | 2(-6x-3)-(3-6x)=-51 | | (5/5z-11)+(4/2z-3)=(-3/5-z) | | (5/5z-11)+(4/2z-)=(-3/5-z) | | (1-3b)=-20 | | 7(3x+2)=8(3x-2) | | 2(2t+4)=3/4(24-8) | | 3(4x+1)=10x+13 | | n/2+ 4=6 | | k-8/9=6 | | 17-2k=7 | | x/6-7=9 | | 7=z/3+5 | | 5(4w-20)=2(4w-25) | | 12-2q=8 | | -5x-(7-2)=-2(4x-4) | | 12−2p=8 | | 4y-34=11 | | -43=-5+4(2c+7) |